Seminars and Colloquia by Series

Triangulation independent Ptolemy varieties

Series
Geometry Topology Seminar
Time
Monday, October 26, 2015 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 270
Speaker
Christian ZickertUniversity of Maryland
The Ptolemy variety is an invariant of a triangulated 3-manifoldM. It detects SL(2,C)-representations of pi_1(M) in the sense that everypoint in the Ptolemy variety canonically determines a representation (up toconjugation). It is closely related to Thurston's gluing equation varietyfor PSL(2,C)-representations. Unfortunately, both the gluing equationvariety and the Ptolemy variety depend on the triangulation and may missseveral components of representations. We discuss the basic properties ofthese varieties, how to compute invariants such as trace fields and complexvolume, and how to obtain a variety, which is independent of thetriangulation.

Uniqueness of seismic inverse source problems modeling microseismicity and ruptures

Series
Applied and Computational Mathematics Seminar
Time
Monday, October 26, 2015 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Professor Maarten de HoopRice University
We consider an inverse problem for an inhomogeneous wave equation with discrete-in-time sources, modeling a seismic rupture. We assume that the sources occur along an unknown path with subsonic velocity, and that data is collected over time on some detection surface. We explore the question of uniqueness for these problems, and show how to recover the times and locations of sources microlocally first, and then the smooth part of the source assuming that it is the same at each source location. In case the sources (now all different) are (roughly speaking) non-negative and of limited oscillation in space, and sufficiently separated in space-time, which is a model for microseismicity, we present an explicit reconstruction, requiring sufficient local energy decay. (Joint research with L. Oksanen and J. Tittelfitz)

Calculation of a Power Price Equilibrium under Risk Averse Trading

Series
Other Talks
Time
Monday, October 26, 2015 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 168
Speaker
Raphael HauserMathematical Institute, University of Oxford
We propose a term structure power price model that, in contrast to widely accepted no-arbitrage based approaches, accounts for the non-storable nature of power. It belongs to a class of equilibrium game theoretic models with players divided into producers and consumers. The consumers' goal is to maximize a mean-variance utility function subject to satisfying an inelastic demand of their own clients (e.g households, businesses etc.) to whom they sell the power. The producers, who own a portfolio of power plants each defined by a running fuel (e.g. gas, coal, oil...) and physical characteristics (e.g. efficiency, capacity, ramp up/down times...), similarly, seek to maximize a mean-variance utility function consisting of power, fuel, and emission prices subject to production constraints. Our goal is to determine the term structure of the power price at which production matches consumption. We show that in such a setting the equilibrium price exists and discuss the conditions for its uniqueness. The model is then extended to account for transaction costs and liquidity considerations in actual trading. Our numerical simulations examine the properties of the term structure and its dependence on various model parameters. We then further extend the model to account for the startup costs of power plants. In contrast to other approaches presented in the literature, we incorporate the startup costs in a mathematically rigorous manner without relying on ad hoc heuristics. Through numerical simulations applied to the entire UK power grid, we demonstrate that the inclusion of startup costs is necessary for the modeling of electricity prices in realistic power systems. Numerical results show that startup costs make electricity prices very spiky. In a final refinement of the model, we include a grid operator responsible for managing the grid. Numerical simulations demonstrate that robust decision making of the grid operator can significantly decrease the number and severity of spikes in the electricity price and improve the reliability of the power grid.

Polytopal Element Methods in Mathematics and Engineering

Series
Other Talks
Time
Monday, October 26, 2015 - 09:05 for 8 hours (full day)
Location
Student Center Theater, Georgia Tech
Speaker
Various speakersGeorgia Tech
The workshop will be held from Monday October 26 - Wednesday October 28, 2015. The purpose of this workshop is to promote communication among the many mathematical and engineering communities currently researching polytopal discretization methods for the numerical approximation of solutions of partial differential equations. A variety of distinct polytopal element methods (POEMs) have been designed to solve the same types of problems, but a workshop-type environment is required to foster a community-wide understanding of the comparative advantages of each technique and to develop a set of ‘best practices’ in regards to implementation. Registration is required.

Georgia Algebraic Geometry Symposium

Series
Other Talks
Time
Friday, October 23, 2015 - 16:30 for 1 hour (actually 50 minutes)
Location
Room 208 Emory Math and Science Center
Speaker
Valery AlexeevUniversity of Georgia
Friday October 23 through Sunday October 25 Emory will host the Georgia Algebraic Geometry symposium featuring the following invited speakers: Valery Alexeev (University of Georgia); Brian Conrad (Stanford University); Brian Lehman (Boston College); Max Lieblich (University of Washington); Alexander Merkurjev (UCLA); Alena Pirutka (Ecole Polytechnique); Aaron Pixton (Harvard University); Tony Varilly-Alvarado (Rice University); Olivier Wittenberg (CNRS - Ecole Normale Superieure).

On the inverse of some sign matrices and on the Moments sliding vector field on the intersection of several manifolds: nodally attractive case

Series
SIAM Student Seminar
Time
Friday, October 23, 2015 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Fabio DifonzoGeorgia Institute of Technology
In this paper, we consider selection of a sliding vector fieldof Filippov type on a discontinuity manifold $\Sigma$ of co-dimension 3(intersection of three co-dimension 1 manifolds). We propose an extension of the “moments vector field”to this case, and - under the assumption that $\Sigma$ is nodally attractive -we prove that our extension delivers a uniquely definedFilippov vector field. As it turns out, the justification of our proposed extension requiresestablishing invertibility of certain sign matrices. Finally,we also propose the extension of the moments vector field todiscontinuity manifolds of co-dimension 4 and higher.

The Complexity of Counting Poset and Permutation Patterns

Series
ACO Student Seminar
Time
Friday, October 23, 2015 - 13:30 for 30 minutes
Location
Skiles 005
Speaker
Anna KirkpatrickGeorgia Tech
We introduce a notion of pattern occurrence that generalizes both classical permutation patterns as well as poset containment. Many questions about pattern statistics and avoidance generalize naturally to this setting, and we focus on functional complexity problems – particularly those that arise by constraining the order dimensions of the pattern and text posets. We show that counting the number of induced, injective occurrences among dimension 2 posets is #P-hard; enumerating the linear extensions that occur in realizers of dimension 2 posets can be done in polynomial time, while for unconstrained dimension it is GI-complete; counting not necessarily induced, injective occurrences among dimension 2 posets is #P-hard; counting injective or not necessarily injective occurrences of an arbitrary pattern in a dimension 1 text is #P-hard, although it is in FP if the pattern poset is constrained to have bounded intrinsic width; and counting injective occurrences of a dimension 1 pattern in an arbitrary text is #P-hard, while it is in FP for bounded dimension texts. This framework easily leads to a number of open questions, chief among which are (1) is it #P-hard to count the number of occurrences of a dimension 2 pattern in a dimension 1 text, and (2) is it #P-hard to count the number of texts which avoid a given pattern?

Label optimal regret bounds for online local learning

Series
ACO Student Seminar
Time
Friday, October 23, 2015 - 13:05 for 30 minutes
Location
Skiles 005
Speaker
Kevin LaiGeorgia Tech
We resolve an open question from (Christiano, 2014b) posed in COLT'14 regarding the optimal dependency of the regret achievable for online local learning on the size of the label set. In this framework the algorithm is shown a pair of items at each step, chosen from a set of n items. The learner then predicts a label for each item, from a label set of size L and receives a real valued payoff. This is a natural framework which captures many interesting scenarios such as collaborative filtering, online gambling, and online max cut among others. (Christiano, 2014a) designed an efficient online learning algorithm for this problem achieving a regret of O((nL^3T)^(1/2)), where T is the number of rounds. Information theoretically, one can achieve a regret of O((n log LT)^(1/2)). One of the main open questions left in this framework concerns closing the above gap. In this work, we provide a complete answer to the question above via two main results. We show, via a tighter analysis, that the semi-definite programming based algorithm of (Christiano, 2014a), in fact achieves a regret of O((nLT)^(1/2)). Second, we show a matching computational lower bound. Namely, we show that a polynomial time algorithm for online local learning with lower regret would imply a polynomial time algorithm for the planted clique problem which is widely believed to be hard. We prove a similar hardness result under a related conjecture concerning planted dense subgraphs that we put forth. Unlike planted clique, the planted dense subgraph problem does not have any known quasi-polynomial time algorithms. Computational lower bounds for online learning are relatively rare, and we hope that the ideas developed in this work will lead to lower bounds for other online learning scenarios as well. Joint work with Pranjal Awasthi, Moses Charikar, and Andrej Risteski at Princeton.

Longest Subsequences Problems and Maximal Eigenvalues of Gaussian Random Matrices

Series
Stochastics Seminar
Time
Thursday, October 22, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Christian HoudreSchool of Mathematics, Georgia Tech
This is survey talk where, both for random words and random permutations, I will present a panoramic view of the subject ranging from classical results to recent breakthroughs. Throughout, equivalencies with some directed last passage percolation models with dependent weights will be pointed out.

Pages