Seminars and Colloquia by Series

Forbidding solutions in (integer) linear programming

Series
ACO Student Seminar
Time
Wednesday, January 23, 2013 - 12:00 for 1 hour (actually 50 minutes)
Location
ISyE Executive classroom
Speaker
Gustavo AnguloGeorgia Tech ISyE
In this talk we consider the problem of finding basic solutions to linear programs where some vertices are excluded. We study the complexity of this and related problems, most of which turn out to be hard. On the other hand, we show that forbidding vertices from 0-1 polytopes can be carried out with a compact extended formulation. A similar result holds for integer programs having a box-integrality property. We discuss some applications of our results.

Parameterization Methods for Computing Normally Hyperbolic Invariant Tori: some numerical examples

Series
CDSNS Colloquium
Time
Tuesday, January 22, 2013 - 16:00 for 1 hour (actually 50 minutes)
Location
skills 06
Speaker
Marta CanadellUniversitat de Barcelona and Georgia Tech
We explain numerical algorithms for the computation of normally hyperbolic invariant manifolds and their invariant bundles, using the parameterization method. The framework leads to solving invariance equations, for which one uses a Newton method adapted to the dynamics and the geometry of the invariant manifolds. We illustrate the algorithms with several examples. The algorithms are inspired in current work with A. Haro and R. de la Llave. This is joint work with Alex Haro.

Indexed Additive Energy

Series
Combinatorics Seminar
Time
Friday, January 18, 2013 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Albert BushGeorgia Tech
The additive energy of a set of integers gives key information on the additive structure of the set. In this talk, we discuss a new, closely related statistic called the indexed additive energy. We will investigate the relationship between the indexed additive energy, the regular additive energy, and the size of the sumset.

INVERSE PROBLEMS WITH EXPERIMENTAL DATA

Series
Applied and Computational Mathematics Seminar
Time
Friday, January 18, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Michael KlibanovUniversity of North Carolina, Charlotte
Coefficient Inverse Problems (CIPs) are the hardest ones to work with in the field of Inverse Problems. Indeed, they are both nonlinear and ill-posed. Conventional numerical methods for CIPs are based on the least squares minimization. Therefore, these methods suffer from the phenomenon of multiple local minima and ravines. This means in turn that those methods are locally convergent ones. In other words, their convergence is guaranteed only of their starting points of iterations are located in small neighborhoods of true solutions. In the past five years we have developed a new numerical method for CIPs for an important hyperbolic Partial Differential Equation, see, e.g. [1,2] and references cited there. This is a globally convergent method. In other words, there is a rigorous guarantee that this method delivers a good approximation for the exact solution without any advanced knowledge of a small neighborhood of this solution. In simple words, a good first guess is not necessary. This method is verified on many examples of computationally simulated data. In addition, it is verified on experimental data. In this talk we will outline this method and present many numerical examples with the focus on experimental data.REFERENCES [1] L. Beilina and M.V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, Springer, New York, 2012. [2] A.V. Kuzhuget, L. Beilina and M.V. Klibanov, A. Sullivan, L. Nguyen and M.A. Fiddy, Blind backscattering experimental data collected in the field and an approximately globally convergent inverse algorithm, Inverse Problems, 28, 095007, 2012.

Conormals and contact homology

Series
Geometry Topology Working Seminar
Time
Friday, January 18, 2013 - 11:30 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
John EtnyreGa Tech

Please Note: This is the first of 4 or 5, 1.5 hour talks.

In this series of talks I will begin by discussing the idea of studying smooth manifolds and their submanifolds using the symplectic (and contact) geometry of their cotangent bundles. I will then discuss Legendrian contact homology, a powerful invariant of Legendrian submanifolds of contact manifolds. After discussing the theory of contact homology, examples and useful computational techniques, I will combine this with the conormal discussion to define Knot Contact Homology and discuss its many wonders properties and conjectures concerning its connection to other invariants of knots in S^3.

Poisson-Dirichlet statistics for the extremes of log-correlated Gaussian fields

Series
Stochastics Seminar
Time
Thursday, January 17, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Louis-Pierre ArguinUniversité de Montréal
Gaussian fields with logarithmically decaying correlations, such as branching Brownian motion and the 2D Gaussian free field, are conjectured to form a new universality class of extreme value statistics (notably in the work of Carpentier & Ledoussal and Fyodorov & Bouchaud). This class is the borderline case between the class of IID random variables, and models where correlations start to affect the statistics. In this talk, I will report on the recent rigorous progress in describing the new features of this class. In particular, I will describe the emergence of Poisson-Dirichlet statistics. This is joint work with Olivier Zindy.

Boundedness of matrix valued dyadic paraproducts on matrix weighted L^p

Series
Analysis Seminar
Time
Wednesday, January 16, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Josh IsralowitzSUNY Albany
Weighted norm inequalities for singular integral operators acting on scalar weighted L^p is a classical topic that goes back to the 70's with the seminal work of R. Hunt, B. Muckenhoupt, and R. Wheeden. On the other hand, weighted norm inequalities for singular integral operators with matrix valued kernels acting on matrix weighted L^p are poorly understood and results (obtained by F. Nazarov, S. Treil, and A. Volberg in the late 90's) are only known for the situation when the kernel is essentially scalar valued.In this talk, we discuss matrix weighted norm inequalities for matrix valued dyadic paraproducts and discuss the possibility of using our results and a recent result of T. Hytonen to obtain concrete weighted norm inequalities for singular integral operators with matrix kernels acting on matrix weighted L^p. This is joint work with Hyun-Kyoung Kwon and Sandra Pott.

Stochastic Differential Equations, Intermittent Diffusion, and Shortest Path

Series
Research Horizons Seminar
Time
Wednesday, January 16, 2013 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hao Min ZhouGeorgia Tech, School of Math
In this talk, I will use the shortest path problem as an example to illustrate how one can use optimization, stochastic differential equations and partial differential equations together to solve some challenging real world problems. On the other end, I will show what new and challenging mathematical problems can be raised from those applications. The talk is based on a joint work with Shui-Nee Chow and Jun Lu. And it is intended for graduate students.

Pages