Seminars and Colloquia by Series

Multiscale image analysis with applications

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 26, 2012 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prashant AthavaleFields Institute, Dep. of Math, University of Toronto,
Images consist of features of varying scales. Thus, multiscale image processing techniques are extremely valuable, especially for medical images. We will discuss multiscale image processing techniques based onvariational methods, specifically (BV, L^2) and (BV, L^1) decompositions. We will discuss the applications to real time denoising, deblurring and image registration.

A New Model for Image Regularization

Series
ACO Student Seminar
Time
Wednesday, November 21, 2012 - 12:00 for 1 hour (actually 50 minutes)
Location
ISyE Executive classroom
Speaker
Cristóbal GuzmánISyE, Georgia Tech
Inpainting, deblurring and denoising images are common tasks required for a number of applications in science and engineering. Since the seminal work of Rudin, Osher and Fatemi, image regularization by total variation (TV) became a standard heuristic for achieving these tasks. In this talk, I will introduce the TV regularization model and some connections with sparse optimization and compressed sensing. Later, I will summarize some of the fastest existing methods for solving TV regularization. Motivated by improving the super-linear (on the dimension) running time of these algorithms, we propose two heuristics for image regularization models: the first one is to replace the TV by the \ell^1 norm of the Laplacian, and the second is a new, to the best of our knowledge, approximation of the TV seminorm, based on a redundant parameterization of the gradient field. We prove that the latter regularizer is an O(log n) approximation of the TV seminorm. This proof is based on basic techniques from Discrete Fourier Analysis and an estimate of the fundamental solutions of the Laplace equation on a grid, due to Mangad. Finally, we present preliminary computational results for the three models, on mid-scale images. This talk will be self-contained. Joint work with Arkadi Nemirovski.

Quasi-periodic solutions for some ill-posed Hamiltonian evolution equations

Series
PDE Seminar
Time
Tuesday, November 20, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Rafael de la LlaveGeorgia Tech
We prove an a-posteriori KAM theorem which applies to some ill-posed Hamiltonian equations. We show that given an approximate solution of an invariance equation which also satisfies some non-degeneracy conditions, there is a true solution nearby. Furthermore, the solution is "whiskered" in the sense that it has stable and unstable directions. We do not assume that the equation defines an evolution equation. Some examples are the Boussinesq equation (and system) and the elliptic equations in cylindrical domains. This is joint work with Y. Sire. Related work with E. Fontich and Y. Sire.

A problem of Erdos on the minimum number of k-cliques

Series
Graph Theory Seminar
Time
Tuesday, November 20, 2012 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jie MaUCLA
Fifty years ago Erdos asked to determine the minimum number of $k$-cliques in a graph on $n$ vertices with independence number less than $l$ (we will refer this as $(k,l)$-problem). He conjectured that this minimum is achieved by the disjoint union of $l-1$ complete graphs of size $\frac{n}{l-1}$. This conjecture was disproved by Nikiforov who showed that Erdos' conjecture can be true only for finite many pairs of $(k,l)$. For $(4,3)$-problem, Nikiforov further conjectured that the balanced blow-up of a $5$-cycle achieves the minimum number of $4$-cliques. We first sharpen Nikiforov's result and show that Erdos' conjecture is false whenever $k\ge 4$ or $k=3, l\ge 2074$. After introducing tools (including Flag Algebra) used in our proofs, we state our main theorems, which characterize the precise structure of extremal examples for $(3,4)$-problem and $(4,3)$-problem, confirming Erdos' conjecture for $(k,l)=(3,4)$ and Nikiforov's conjecture for $(k,l)=(4,3)$. We then focus on $(4,3)$-problem and sketch the proof how we use stability arguments to get the extremal graphs, the balanced blow-ups of $5$-cycle. Joint work with Shagnik Das, Hao Huang, Humberto Naves and Benny Sudakov.

Regularity and stochastic homogenization of fully nonlinear equations without uniform ellipticity.

Series
Job Candidate Talk
Time
Tuesday, November 20, 2012 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Charles SmartMIT
I will discuss regularity of fully nonlinear elliptic equations when the usual uniform upper bound on the ellipticity is replaced by bound on its $L^d$ norm, where $d$ is the dimension of the ambient space. Our estimates refine the classical theory and require several new ideas that we believe are of independent interest. As an application, we prove homogenization for a class of stationary ergodic strictly elliptic equations.

Discrete Mathematical Biology Working Seminar

Series
Other Talks
Time
Tuesday, November 20, 2012 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
Christine HeitschGeorgia Tech
A discussion of the papers "Getting started in probabilistic graphical models" by Airoldi (2007) and "Inferring cellular networks using probabilistic graphical models" by Friedman (2004).

Preperiodic points for quadratic polynomials

Series
Algebra Seminar
Time
Monday, November 19, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
David KrummUniversity of Georgia
We use a problem in arithmetic dynamics as motivation to introduce new computational methods in algebraic number theory, as well as new techniques for studying quadratic points on algebraic curves.

Near-symplectic 6-manifolds with PS-overtwisted contact submanifolds

Series
Geometry Topology Seminar
Time
Monday, November 19, 2012 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ramon VeraDurham University
We discuss two concepts of low-dimensional topology in higher dimensions: near-symplectic manifolds and overtwisted contact structures. We present a generalization of near-symplectic 4-manifolds to dimension 6. By near-symplectic, we understand a closed 2-form that is symplectic outside a small submanifold where it degenerates. This approach uses some singular mappings called generalized broken Lefschetz fibrations. An application of this setting appears in contact topology. We find that a contact 5-manifold, which appears naturally in this context, is PS-overtwisted. This property can be detected in a rather simple way.

Low-dose image reconstruction for 4D Cone Beam CT: sparsity, algorithm, and implementation

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 19, 2012 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hao GaoDep of Math and CS/ Dep of Radiology and Imaging Sciences, Emory University
I will talk about (1) a few sparsity models for 4DCBCT; (2) the split Bregman method as an efficient algorithm for solving L1-type minimization problem; (3) an efficient implementation through fast and highly parallelizable algorithms for computing the x-ray transform and its adjoint.

Pages