Seminars and Colloquia by Series

Thursday, October 16, 2008 - 11:00 , Location: Skiles 269 , Mohammad Ghomi , School of Mathematics, Georgia Tech , Organizer: Guillermo Goldsztein
We prove that a smooth compact submanifold of codimension $2$ immersed in $R^n$, $n>2$, bounds at most finitely many topologically distinct compact nonnegatively curved hypersurfaces. This settles a question of Guan and Spruck related to a problem of Yau. Analogous results for complete fillings of arbitrary Riemannian submanifolds are obtained as well. On the other hand, we show that these finiteness theorems may not hold if the codimension is too high, or the prescribed boundary is not sufficiently regular. Our proofs employ, among other methods, a relative version of Nash's isometric embedding theorem, and the theory of Alexandrov spaces with curvature bounded below, including the compactness and stability theorems of Gromov and Perelman. These results consist of joint works with Stephanie Alexander and Jeremy Wong, and Robert Greene.
Wednesday, October 15, 2008 - 12:00 , Location: Skiles 255 , Ben Webb , School of Mathematics, Georgia Tech , Organizer:
In the study of one dimensional dynamical systems it is often assumed that the functions involved have a negative Schwarzian derivative. However, as not all one dimensional systems of interest have this property it is natural to consider a generalization of this condition. Specifically, we consider the interval functions of a real variable having some iterate with a negative Schwarzian derivative and show that many known results generalize to this larger class, that is to functions with an eventual negative Schwarzian derivative. The property of having an eventual negative Schwarzian derivative is nonasymptotic therefore verification of whether a function has such an iterate can often be done by direct computation. The introduction of this class was motivated by some maps arising in neuroscience.
Wednesday, October 15, 2008 - 11:00 , Location: Skiles 255 , Yang Kuang , Arizona State University , Organizer:
Chronic HBV infection affects 350 million people and can lead to death through cirrhosis-induced liver failure or hepatocellular carcinoma. We present the rich dynamics of two recent models of HBV infection with logistic hepatocyte growth and a standard incidence function governing viral infection. One of these models also incorporates an explicit time delay in virus production. All model parameters can be estimated from biological data. We simulate a course of lamivudine therapy and find that the models give good agreement with clinical data. Previous models considering constant hepatocyte growth have permitted only two dynamical possibilities: convergence to a virus free or an endemic steady state. Our models admit periodic solutions. Minimum hepatocyte populations are very small in the periodic orbit, and such a state likely represents acute liver failure. Therefore, the often sudden onset of liver failure in chronic HBV patients can be explained as a switch in stability caused by the gradual evolution of parameters representing the disease state.
Friday, October 10, 2008 - 15:00 , Location: Skiles 168 , Stas Minsker , School of Mathematics, Georgia Tech , Organizer:
Based on a paper by E. Candes and Y. Plan.
Friday, October 10, 2008 - 14:00 , Location: Skiles 269 , Vera Vertesi , School of Mathematics, Georgia Tech , Organizer: John Etnyre
In this talk I will give a purely combinatorial description of Knot Floer Homology for knots in the three-sphere (Manolescu-Ozsvath-Szabo- Thurston). In this homology there is a naturally associated invariant for transverse knots. This invariant gives a combinatorial but still an effective way to distinguish transverse knots (Ng-Ozsvath-Thurston). Moreover it leads to the construction of an infinite family of non-transversely simple knot-types (Vertesi).
Thursday, October 9, 2008 - 16:00 , Location: Skiles 255 , Lincoln Lu , University of South Carolina , Organizer: Prasad Tetali
We consider a random subgraph G_p of a host graph G formed by retaining each edge of G with probability p. We address the question of determining the critical value p (as a function of G) for which a giant component emerges. Suppose G satisfies some (mild) conditions depending on its spectral gap and higher moments of its degree sequence. We define the second order average degree \tilde{d} to be \tilde{d}=\sum_v d_v^2/(\sum_v d_v) where d_v denotes the degree of v. We prove that for any \epsilon > 0, if p > (1+ \epsilon)/\tilde{d} then almost surely the percolated subgraph G_p has a giant component. In the other direction, if p < (1-\epsilon)/\tilde{d} then almost surely the percolated subgraph G_p contains no giant component. (Joint work with Fan Chung Graham and Paul Horn)
Thursday, October 9, 2008 - 12:05 , Location: Skiles 255 , Roland van der Veen , University of Amsterdam , Organizer: Robin Thomas
The aim of this talk is to introduce techniques from knot theory into the study of graphs embedded in 3-space. The main characters are hyperbolic geometry and the Jones polynomial. Both have proven to be very successful in studying knots and conjecturally they are intimately related. We show how to extend these techniques to graphs and discuss possible applications. No prior knowledge of knot theory or geometry will be assumed.
Wednesday, October 8, 2008 - 13:30 , Location: Skiles 269 , Atish Das Sarma , CS/ACO, Georgia Tech , Organizer: Annette Rohrs
This study focuses on computations on large graphs (e.g., the web-graph) where the edges of the graph are presented as a stream. The objective in the streaming model is to maintain small amount of memory and perform few passes over the data.
In the streaming model, we show how to perform several graph computations including estimating the probability distribution after a random walk of certain length l, estimate the mixing time, and the conductance. We can compute the approximate PageRank values in O(nM^{-1/4}) space and O(M^{3/4}) passes (where n is the number of nodes and M is the mixing time of the graph). In comparison, a standard (matrix-vector multiplication) implementation of the PageRank algorithm will take O(n) space and O(M) passes. The main ingredient in all our algorithms is to explicitly perform several random walks of certain length efficiently in the streaming model. I shall define and motivate the streaming model and the notion of PageRank, and describe our results and techniques.
Joint work with Sreenivas Gollapudi and Rina Panigrahy from Microsoft Research.
Wednesday, October 8, 2008 - 11:00 , Location: Skiles 255 , Dr. John Glasser , CDC/CCID/NCIRD , Organizer:

Background: We endeavor to reproduce historical observations and to identify and remedy the cause of any disparate predictions before using models to inform public policy-making. We have no finely age- and time-stratified observations from historical pandemics, but prior exposure of older adults to a related strain is among the more compelling hypotheses for the w-shaped age-specific mortality characterizing the 1918 pandemic, blurring the distinction between annual and pandemic influenza.

Methods: We are attempting to reproduce patterns in annual influenza morbidity and mortality via a cross-classified compartmental model whose age class sojourns approximate the longevity of clusters of closely-related strains. In this population model, we represent effective inter-personal contacts via a generalization of Hethcote's formulation of mixing as a convex combination of contacts within and between age groups. Information about mixing has been sought in face-to-face conversations, a surrogate for contacts by which respiratory diseases might be transmitted, but could also be obtained from household and community transmission studies. We reanalyzed observations from several such studies to learn about age-specific preferences, proportions of contacts with others the same age. And we obtained age-specific forces of infection from proportions reporting illness in a prospective study of household transmission during the 1957 influenza pandemic, which we gamma distributed to correct for misclassification. Then we fit our model to weekly age-specific hospitalizations from Taiwan's National Health Insurance Program, 2000-07, by adjusting a) age-specific coefficients of harmonic functions by which we model seasonality and b) probabilities of hospitalization given influenza.

Results: While our model accounts for only 30% of the temporal variation in hospitalizations, estimated conditional probabilities resemble official health resource utilization statistics. Moreover, younger and older people are most likely to be hospitalized and elderly ones to die of influenza, with modeled deaths 10.6% of encoded influenza or pneumonia mortality.

Conclusions: Having satisfactorily reproduced recent patterns in influenza morbidity and mortality in Taiwan via a deterministic model, we will switch to a discrete event-time simulator and - possibly with different initial conditions and selected parameters - evaluate the sufficiency of projected pandemic vaccine production.

Joint work with Denis Taneri, and Jen-Hsiang Chuang

Series: PDE Seminar
Tuesday, October 7, 2008 - 15:15 , Location: Skiles 255 , Nassif Ghoussoub , University of British Columbia, Canada , Organizer:
We describe how several nonlinear PDEs and evolutions ­including stationary and dynamic Navier-Stokes equations­ can be formulated and resolved variationally by minimizing energy functionalsof the form
I(u) = L(u, -\Lambda u) + \langle \Lambda u, u\rangle
I(u) = \Int^T_0 [L(t, u(t), -\dot u(t) - \Lambda u(t)) + \langle\Lambda u(t), u(t)\rangle]dt + \ell (u(0) - u(T)
\frac{u(T) + u(0)}{2}

where L is a time-dependent "selfdual Lagrangian" on state space, is another selfdual "boundary Lagrangian", and is a nonlinear operator (such as \Lambda u = div(u \otimes u) in the Navier-Stokes case). However, just like the selfdual Yang-Mills equations, the equations are not obtained via Euler-Lagrange theory, but from the fact that a natural infimum is attained. In dimension 2, we recover the well known solutions for the corresponding initial-value problem as well as periodic and anti-periodic ones, while in dimension 3 we get Leray solutions for the initial-value problems, but also solutions satisfying u(0) = \alpha u(T ) for any given in (-1, 1). It is worth noting that our variational principles translate into Leray's energy identity in dimension 2 (resp., inequality in dimension 3). Our approach is quite general and does apply to many other situations.