Seminars and Colloquia by Series

A comparison between SL_n spider categories

Series
Geometry Topology Seminar
Time
Monday, March 27, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Anup PoudelOhio State

In this talk, we will explore and make comparisons between various models that exist for spherical tensor categories associated to the category of representations of the quantum group U_q(SL_n). In particular, we will discuss the combinatorial model of Murakami-Ohtsuki-Yamada (MOY), the n-valent ribbon model of Sikora and the trivalent spider category of Cautis-Kamnitzer-Morrison (CKM). We conclude by showing that the full subcategory of the spider category from CKM, whose objects are monoidally generated by the standard representation and its dual, is equivalent as a spherical braided category to Sikora's quotient category. This proves a conjecture of Le and Sikora and also answers a question from Morrison's Ph.D. thesis.

Application of NNLCIs to the scattering of electromagnetic waves around curved PECs

Series
Applied and Computational Mathematics Seminar
Time
Monday, March 27, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005 and https://gatech.zoom.us/j/98355006347
Speaker
Hwi LeeGeorgia Tech Math

In this talk, we demonstrate the application of Neural Networks with Locally Converging Inputs (NNLCI) to simulate the scattering of electromagnetic waves around two-dimensional perfect electric conductors (PEC). The NNLCIs are designed to output high-fidelity numerical solutions from local patches of two coarse grid numerical solutions obtained by a convergent numerical scheme. Once trained, the NNLCIs can play the role of a computational cost-saving tool for repetitive computations with varying parameters. To generate the inputs to our NNLCI, we design on uniform rectangular grids a second-order accurate finite difference scheme that can handle curved PEC boundaries systematically. More specifically, our numerical scheme is based on the Back and Forth Error Compensation and Correction method together with the construction of ghost points via a level set framework, PDE-based extension technique, and what we term guest values. We illustrate the performance of our NNLCI subject to variations in incident waves as well as PEC boundary geometries.

On the weak implies strong conjecture

Series
Algebra Seminar
Time
Monday, March 27, 2023 - 10:20 for 1.5 hours (actually 80 minutes)
Location
Skiles 005
Speaker
Thomas PolstraUniversity of Alabama

A fundamental conjecture of tight closure theory is every weakly F-regular ring is strongly F -regular. There has been incremental progress on this conjecture since the inception of tight closure. Most notably, the conjecture has been resolved for rings graded over a field by Lyubeznik and Smith. Otherwise, known progress around the conjecture have required assumptions on the ring that are akin to being Gorenstein. We extend known cases by proving the equivalence of F -regularity classes for rings whose anti-canonical algebra is Noetherian on the punctured spectrum. The anti-canonical algebra being Noetherian for a strongly F -regular ring is conjectured to be a vacuous assumption. This talk is based on joint work with Ian Aberbach and Craig Huneke.

Anderson Localization in dimension two for singular noise, part five

Series
Mathematical Physics and Analysis Working Seminar
Time
Friday, March 24, 2023 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006 and https://uci.zoom.us/j/93130067385
Speaker
Omar HurtadoUC Irvine

We will finish our proof of the key lemma for the probabilistic unique continuation principle used in Ding-Smart. We will also briefly recall enough of the theory of martingales to clarify a use of Azuma's inequality, and the basic definitions of \epsilon-nets and \epsilon-packings required to formulate the basic volumetric bound for these in e.g. the unit sphere, before using these to complete the proof.

Mathapalooza!

Series
Time
Saturday, March 18, 2023 - 01:00 for 3 hours
Location
The Paideia School,
Speaker
Mathematics in Motion, Inc.

Please Note: Mathapalooza! is the biggest math event of the Atlanta Science Festival

Mathapalooza! is back at this year's Atlanta Science Festival! Come join us on Saturday, March 18, for an afternoon of mathematical fun beginning at 1:00pm at the Paideia School.  There will be interactive puzzles and games, artwork, music, stage acts, and mathematics in motion.

Bilinear pairings on two-dimensional cobordisms and generalizations of the Deligne category

Series
Geometry Topology Seminar
Time
Friday, March 17, 2023 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Radmila SazdanovicNorth Carolina State

The Deligne category of symmetric groups is the additive Karoubi closure of the partition category. The partition category may be interpreted, following Comes, via a particular linearization of the category of two-dimensional oriented cobordisms. In this talk we will use a generalization of this approach to the Deligne category coupled with the universal construction of two-dimensional topological theories to construct their multi-parameter monoidal generalizations, one for each rational function in one variable. This talk is based on joint work with M. Khovanov.

Hill Four-Body Problem with oblate bodies

Series
CDSNS Colloquium
Time
Friday, March 17, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006 and Online
Speaker
Wai Ting LamFAU

https://gatech.zoom.us/j/91390791493?pwd=QnpaWHNEOHZTVXlZSXFkYTJ0b0Q0UT09

G. W. Hill made major contributions to Celestial Mechanics. One of them is to develop his lunar theory as an alternative approach for the study of the motion of the Moon around the Earth, which is the classical Lunar Hill problem. The mathematical model we study is one of the extensions of the classical Hill approximation of the restricted three-body problem. Considering a restricted four body problem, with a hierarchy between the bodies: two larger bodies, a smaller one and a fourth infinitesimal body, we encounter the shapes of the three heavy bodies via oblateness. We first find that the triangular central configurations of the three heavy bodies is a scalene triangle. Through the application of the Hill approximation, we obtain the limiting Hamiltonian that describes the dynamics of the infinitesimal body in a neighborhood of the smaller body. As a motivating example, we identify the three heavy bodies with the Sun, Jupiter and the Jupiter’s Trojan asteroid Hektor. 

Path odd-covers of graphs

Series
Combinatorics Seminar
Time
Friday, March 17, 2023 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 249
Speaker
Youngho YooTexas A&M

We study the minimum number of paths needed to express the edge set of a given graph as the symmetric difference of the edge sets of the paths. This can be seen as a weakening of Gallai’s path decomposition problem, and a variant of the “odd cover” problem of Babai and Frankl which asks for the minimum number of complete bipartite graphs whose symmetric difference gives the complete graph. We relate this “path odd-cover” number of a graph to other known graph parameters and prove some bounds. Joint work with Steffen Borgwardt, Calum Buchanan, Eric Culver, Bryce Frederickson, and Puck Rombach.

Links of surface singularities: Milnor fillings and Stein fillings

Series
Geometry Topology Seminar
Time
Friday, March 17, 2023 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Olga PlamenevskayaStony Brook

A link of an isolated complex surface singularity is the intersection of the surface with a small sphere centered at the singular point. The link is a smooth 3-manifold that carries a natural contact structure (given by complex tangencies); one might then want to study its symplectic or Stein fillings. A special family of Stein fillings, called Milnor fillings, can be obtained by smoothing the singular point of the original complex surface.  We will discuss some properties and constructions of Milnor fillings and general Stein fillings, and ways to detect whether the link of singularity has Stein fillings that do not arise from smoothings.

Pages