Seminars and Colloquia by Series

Towards Khovanov homology for links in general 3-manifolds

Series
Geometry Topology Seminar
Time
Monday, October 16, 2023 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sergei GukovCaltech

I will survey recent progress toward Khovanov homology for links in general 3-manifolds based on categorification of $q$-series invariants labeled by Spin$^c$ structures. Much of the talk will focus on the $q$-series invariants themselves. In particular, I hope to explain how to compute them for a general 3-manifold and to describe some of their properties, e.g. relation to other invariants labeled by Spin or Spin$^c$ structures, such as Turaev torsion, Rokhlin invariants, and the "correction terms'' of the Heegaard Floer theory. There are many problems to work on in this relatively new research area. If time permits, I will outline some of them, and, in the context of plumbed 3-manifolds, comment on the relation to lattice cohomology proposed by Akhmechet, Johnson, and Krushkal.

Combinatorial commutative algebra rules

Series
Algebra Seminar
Time
Monday, October 16, 2023 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ada Stelzer University of Illinois Urbana-Champaign

Please Note: There will be a pre-seminar (aimed toward grad students and postdocs) from 11:00 am-11:30 am in Skiles 006.

We present an algorithm that generates sets of size equal to the degree of a given projective variety. The steps of this "CCAR" algorithm are individually well-known, but we argue that when combined they form a versatile and under-used method for studying problems in computational algebraic geometry. The latter part of the talk will focus on applying the CCAR algorithm to examples from Schubert calculus.

Incidence estimates for tubes

Series
School of Mathematics Colloquium
Time
Thursday, October 12, 2023 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hong WangNYU, Courant Insitute

Let P be a set of points and L be a set of lines in the plane, what can we say about the number of incidences between P and L,    I(P, L):= |\{ (p, l)\in P\times L, p\in L\}| ?

 

The problem changes drastically when we consider a thickening version, i.e. when P is a set of unit balls and L is a set of tubes of radius 1. Furstenberg set conjecture can be viewed as an incidence problem for tubes. It states that a set containing an s-dim subset of a line in every direction should have dimension at least  (3s+1)/2 when s>0. 

 

We will survey a sequence of results by Orponen, Shmerkin and a recent joint work with Ren that leads to the solution of this conjecture

Genus 2 Lefschetz Fibrations

Series
Geometry Topology Student Seminar
Time
Wednesday, October 11, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sierra KnavelGeorgia Tech

In this talk, we will give background on Lefschetz fibrations and their relationship to symplectic 4-manifolds. We will then discuss results on their fundamental groups. Genus-2 Lefschetz fibrations are of particular interest because of how much we know and don't know about them. We will see what fundamental groups a genus-2 Lefschetz fibration can have and what questions someone might ask when studying these objects.

A degenerate Arnold diffusion mechanism in the Restricted 3 Body Problem

Series
CDSNS Colloquium
Time
Friday, October 6, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 249 (in-person)
Speaker
Jaime ParadelaUniversity of Maryland

A major question in dynamical systems is to understand the mechanisms driving global instability in the 3 Body Problem (3BP), which models the motion of three bodies under Newtonian gravitational interaction. The 3BP is called restricted if one of the bodies has zero mass and the other two, the primaries, have strictly positive masses $m_0, m_1$. In the region of the phase space where the massless body is far from the primaries, the problem can be studied as a (fast) periodic perturbation of the 2 Body Problem (2BP), which is integrable.

We prove that the restricted 3BP exhibits topological instability: for any values of the masses $m_0, m_1$ (except $m_0 = m_1$), we build orbits along which the angular momentum of the massless body (conserved along the flow of the 2BP) experiences an arbitrarily large variation. In order to prove this result we show that a degenerate Arnold diffusion mechanism takes place in the restricted 3BP. Our work extends previous results by Delshams, Kaloshin, De la Rosa and Seara for the a priori unstable case $m_1< 0$, where the model displays features of the so-called a priori stable setting. This is joint work with Marcel Guardia and Tere Seara.

Packing colorings

Series
Combinatorics Seminar
Time
Friday, October 6, 2023 - 15:15 for 1 hour (actually 50 minutes)
Location
Skiles 308
Speaker
Ewan DaviesColorado State University

We discuss some recent results in graph coloring that show somewhat stronger conclusions in a similar parameter range to traditional coloring theorems. We consider the standard setup of list coloring but ask for a decomposition of the lists into pairwise-disjoint list colorings. The area is new and we discuss many open problems.

Finite-time Convergence Guarantees of Contractive Stochastic Approximation: Mean-Square and Tail Bounds

Series
Stochastics Seminar
Time
Thursday, October 5, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skile 006
Speaker
Siva Theja MaguluriGeorgia Tech

Abstract: Motivated by applications in Reinforcement Learning (RL), this talk focuses on the Stochastic Appproximation (SA) method to find fixed points of a contractive operator. First proposed by Robins and Monro, SA is a popular approach for solving fixed point equations when the information is corrupted by noise. We consider the SA algorithm for operators that are contractive under arbitrary norms (especially the l-infinity norm). We present finite sample bounds on the mean square error, which are established using a Lyapunov framework based on infimal convolution and generalized Moreau envelope. We then present our more recent result on concentration of the tail error, even when the iterates are not bounded by a constant. These tail bounds are obtained using exponential supermartingales in conjunction with the Moreau envelop and a novel bootstrapping approach. Our results immediately imply the state-of-the-art sample complexity results for a large class of RL algorithms.

Bio: Siva Theja Maguluri is Fouts Family Early Career Professor and Associate Professor in the H. Milton Stewart School of Industrial and Systems Engineering at Georgia Tech. He obtained his Ph.D. and MS in ECE as well as MS in Applied Math from UIUC, and B.Tech in Electrical Engineering from IIT Madras. His research interests span the areas of Control, Optimization, Algorithms and Applied Probability and include Reinforcement Learning theory and Stochastic Networks. His research and teaching are recognized through several awards including the  Best Publication in Applied Probability award, NSF CAREER award, second place award at INFORMS JFIG best paper competition, Student best paper award at IFIP Performance, CTL/BP Junior Faculty Teaching Excellence Award, and Student Recognition of Excellence in Teaching: Class of 1934 CIOS Award.

Convergence of Frame Series: from Hilbert Space to Modulation Space

Series
Analysis Seminar
Time
Wednesday, October 4, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Pu-Ting YuGeorgia Tech

It is known that if $\{x_n\}$ is a frame for a separable Hilbert space, then there exist some sequences $\{y_n\}$ such that $x= \sum x_n$, and this sum converges in the norm of H. This equation is called the reconstruction formula of x. In this talk, we will talk about the existence of frames that admit absolutely convergent and unconditionally convergent reconstruction formula. Some characterizations of such frames will also be presented. Finally, we will present an extension of this problem about the unconditional convergence of Gabor expansion in Modulation spaces.

Enumerating Patterns in Social Networks - A Distribution-Free Model

Series
Graph Theory Seminar
Time
Tuesday, October 3, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Fan WeiDuke University

Fox et al introduced the model of c-closed graphs, a distribution-free model motivated by one of the most universal signatures of social networks, triadic closure. Even though enumerating maximal cliques in an arbitrary network can run in exponential time, it is known that for c-closed graph, enumerating maximal cliques and maximal complete bipartite graphs is always fast, i.e., with complexity being polynomial in the number of vertices in the network. In this work, we investigate further by enumerating maximal blow-ups of an arbitrary graph H in c-closed graphs. We prove that given any finite graph H, the number of maximal blow-ups of H in any c-closed graph on n vertices is always at most polynomial in n. When considering maximal induced blow-ups of a finite graph H, we provide a characterization of graphs H when the bound is always polynomial in n. A similar general theorem is also proved when H is infinite.

Arnold diffusion in Hamiltonian systems with small dissipation

Series
CDSNS Colloquium
Time
Monday, October 2, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
In-person in Skiles 005
Speaker
Marian GideaYeshiva University

We consider a mechanical system consisting of a rotator and a pendulum, subject to a small, conformally symplectic perturbation. The resulting system has energy dissipation. We provide explicit conditions on the dissipation parameter, so that the resulting system exhibits Arnold diffusion. More precisely, we show that there are diffusing orbits along which the energy of the rotator grows by an amount independent of the smallness parameter. The fact that Arnold diffusion may play a role  in  systems with small dissipation was conjectured by Chirikov. Our system can be viewed as a simplified  model for an energy harvesting device, in which context the energy growth translates into generation of electricity.
Joint work with S.W. Akingbade and T-M. Seara.

Pages