Seminars and Colloquia by Series

Fast numerical methods for solving linear PDEs

Series
Applied and Computational Mathematics Seminar
Time
Thursday, April 23, 2009 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Per-Gunnar MartinssonDept of Applied Mathematics, University of Colorado

Please Note: Note special day

Linear boundary value problems occur ubiquitously in many areas of science and engineering, and the cost of computing approximate solutions to such equations is often what determines which problems can, and which cannot, be modelled computationally. Due to advances in the last few decades (multigrid, FFT, fast multipole methods, etc), we today have at our disposal numerical methods for most linear boundary value problems that are "fast" in the sense that their computational cost grows almost linearly with problem size. Most existing "fast" schemes are based on iterative techniques in which a sequence of incrementally more accurate solutions is constructed. In contrast, we propose the use of recently developed methods that are capable of directly inverting large systems of linear equations in almost linear time. Such "fast direct methods" have several advantages over existing iterative methods: (1) Dramatic speed-ups in applications involving the repeated solution of similar problems (e.g. optimal design, molecular dynamics). (2) The ability to solve inherently ill-conditioned problems (such as scattering problems) without the use of custom designed preconditioners. (3) The ability to construct spectral decompositions of differential and integral operators. (4) Improved robustness and stability. In the talk, we will also describe how randomized sampling can be used to rapidly and accurately construct low rank approximations to matrices. The cost of constructing a rank k approximation to an m x n matrix A for which an O(m+n) matrix-vector multiplication scheme is available is O((m+n)*k). This cost is the same as that of the well-established Lanczos scheme, but the randomized scheme is significantly more robust. For a general matrix A, the cost of the randomized scheme is O(m*n*log(k)), which should be compared to the O(m*n*k) cost of existing deterministic methods.

K_5 subdivisions in 5-connected nonplanar graphs

Series
Graph Theory Seminar
Time
Thursday, April 23, 2009 - 12:05 for 1.5 hours (actually 80 minutes)
Location
Skiles 255
Speaker
Jie MaSchool of Mathematics, Georgia Tech
A well know theorem of Kuratowski states that a graph is planar graph iff it contains no TK_5 or TK_{3,3}. In 1970s Seymour conjectured that every 5-connected nonplanar graph contains a TK_5. In the talk we will discuss several special cases of the conjecture, for example the graphs containing K_4^- (K_4 withour an edge). A related independent paths theorem also will be covered.

Universality via the Dbar Steepest Descent Method

Series
Analysis Seminar
Time
Wednesday, April 22, 2009 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Peter D. MillerUniversity of Michigan
We will discuss a new method of asymptotic analysis of matrix-valued Riemann-Hilbert problems that involves dispensing with analyticity in favor of measured deviation therefrom. This method allows the large-degree analysis of orthogonal polynomials on the real line with respect to varying nonanalytic weights with external fields having two Lipschitz-continuous derivatives, as long as the corresponding equilibrium measure has typical support properties. Universality of local eigenvalue statistics of unitary-invariant ensembles in random matrix theory follows under the same conditions. This is joint work with Ken McLaughlin.

Efficient Circular-Secure Encryption from Hard Learning Problems

Series
ACO Student Seminar
Time
Wednesday, April 22, 2009 - 13:30 for 2 hours
Location
ISyE Executive Classroom
Speaker
David CashComputer Science, Georgia Tech
We construct efficient and natural encryption schemes that remain secure (in the standard model) even when used to encrypt messages that may depend upon their secret keys. Our schemes are based on well-studied "noisy learning" problems. In particular, we design 1) A symmetric-key cryptosystem based on the "learning parity with noise" (LPN) problem, and 2) A public-key cryptosystem based on the "learning with errors" (LWE) problem, a generalization of LPN that is at least as hard as certain worst-case lattice problems (Regev, STOC 2005; Peikert, STOC 2009). Remarkably, our constructions are close (but non-trivial) relatives of prior schemes based on the same assumptions --- which were proved secure only in the usual key-independent sense --- and are nearly as efficient. For example, our most efficient public-key scheme encrypts and decrypts in amortized O-tilde(n) time per message bit, and has only a constant ciphertext expansion factor. This stands in contrast to the only other known standard-model schemes with provable security for key-dependent messages (Boneh et al., CRYPTO 2008), which incur a significant extra cost over other semantically secure schemes based on the same assumption. Our constructions and security proofs are simple and quite natural, and use new techniques that may be of independent interest. This is joint work with Chris Peikert and Amit Sahai.

Did you hear what's going round?

Series
Research Horizons Seminar
Time
Wednesday, April 22, 2009 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Evans HarrellSchool of Mathematics, Georgia Tech
The eigenvalues of the Laplacian are the squares of the frequencies of the normal modes of vibration, according to the wave equation. For this reason, Bers and Kac referred to the problem of determining the shape of a domain from the eigenvalue spectrum of the Laplacian as the question of whether one can "hear" the shape. It turns out that in general the answer is "no." Sometimes, however, one can, for instance in extremal cases where a domain, or a manifold, is round. There are many "isoperimetric" theorems that allow us to conclude that a domain, curve, or a manifold, is round, when enough information about the spectrum of the Laplacian or a similar operator is known. I'll describe a few of these theorems and show how to prove them by linking geometry with functional analysis.

Reduced divisors on graphs and metric graphs

Series
Graph Theory Seminar
Time
Wednesday, April 22, 2009 - 11:05 for 1.5 hours (actually 80 minutes)
Location
Skiles 269
Speaker
Matt BakerSchool of Mathematics, Georgia Tech
I will discuss some new results, as well as new interpretations of some old results, concerning reduced divisors (a.k.a. G-parking functions) on graphs, metric graphs, and tropical curves.

CANCELLED -- Sparse matrices, sparse signals, and sparse algorithms

Series
ACO Colloquium
Time
Tuesday, April 21, 2009 - 16:30 for 2 hours
Location
Skiles 255
Speaker
Anna GilbertUniversity of Michigan, Ann Arbor
The past 10 years have seen a confluence of research in sparse approximation amongst computer science, mathematics, and electrical engineering. Sparse approximation encompasses a large number of mathematical, algorithmic, and signal processing problems which all attempt to balance the size of a (linear) representation of data and the fidelity of that representation. I will discuss several of the basic algorithmic problems and their solutions, focusing on special classes of matrices. I will conclude with an application in biological testing.

The Minimal Period Problem for the Classical Forced Pendulum Equation

Series
CDSNS Colloquium
Time
Monday, April 20, 2009 - 16:30 for 2 hours
Location
Skiles 255
Speaker
Jianshe YuGuangzhou University
In the talk I will discuss the periodicity of solutions to the classical forced pendulum equation y" + A sin y = f(t) where A= g/l is the ratio of the gravity constant and the pendulum length, and f(t) is an external periodic force with a minimal period T. The major concern is to characterize conditions on A and f under which the equation admits periodic solutions with a prescribed minimal period pT, where p>1 is an integer. I will show how the new approach, based on the critical point theory and an original decomposition technique, leads to the existence of such solutions without requiring p to be a prime as imposed in most previous approaches. In addition, I will present the first non-existence result of such solutions which indicates that long pendulum has a natural resistance to oscillate periodically.

Hadamard's conjecture, Green function estimates and potential theory for higher order elliptic operators

Series
Analysis Seminar
Time
Monday, April 20, 2009 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Svitlana MayborodaPurdue University

Please Note: Note special time

In 1908 Hadamard conjectured that the biharmonic Green function must be positive. Later on, several counterexamples to Hadamard's conjecture have been found and a variety of upper estimates were obtained in sufficiently smooth domains. However, the behavior of the Green function in general domains was not well-understood until recently. In a joint work with V. Maz'ya we derive sharp pointwise estimates for the biharmonic and, more generally, polyharmonic Green function in arbitrary domains. Furthermore, we introduce the higher order capacity and establish an analogue of the Wiener criterion describing the precise correlation between the geometry of the domain and the regularity of the solutions to the polyharmonic equation.

Periodic orbits of the N-body problem in celestial mechanics

Series
Applied and Computational Mathematics Seminar
Time
Monday, April 20, 2009 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Tiancheng OuyangBrigham Young
In this talk, I will show many interesting orbits in 2D and 3D of the N-body problem. Some of them do not have symmetrical property nor with equal masses. Some of them with collision singularity. The methods of our numerical optimization lead to search the initial conditions and properties of preassigned orbits. The variational methods will be used for the prove of the existence.

Pages