Seminars and Colloquia by Series

Some Problems and Results in Additive Combinatorics.

Series
Research Horizons Seminar
Time
Wednesday, September 9, 2009 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Ernie CrootSchool of Mathematics, Georgia Tech
Additive combinatorics is a relatively new field, with many diverse and exciting research programmes. In this talk I will discuss two of these programmes -- the continuing development of sum-product inequalities, and the unfolding progress on arithmetic progressions -- along with some new results proved by me and my collaborators. Hopefully I will have time to mention some nice research problems as well.

A polyhedral study of the mixed integer cut

Series
ACO Student Seminar
Time
Wednesday, September 9, 2009 - 12:00 for 1 hour (actually 50 minutes)
Location
ISyE Executive Classroom
Speaker
Steve TyberISyE, Georgia Tech
In 1969, Gomory introduced the master group polyhedron for pure integer programs and derives the mixed integer cut (MIC) as a facet of a special family of these polyhedra. We study the MIC in this framework, characterizing both its facets and extreme points; next, we extend our results under mappings between group polyhedra; and finally, we conclude with related open problems. No prior knowledge of algebra or the group relaxation is assumed. Terminology will be introduced as needed. Joint work with Ellis Johnson.

On asymptotics, structure and stability for multicomponent reactive flows

Series
PDE Seminar
Time
Tuesday, September 8, 2009 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Konstantina TrivisaUniversity of Maryland, College Park
Multicomponent reactive flows arise in many practical applicationssuch as combustion, atmospheric modelling, astrophysics, chemicalreactions, mathematical biology etc. The objective of this work isto develop a rigorous mathematical theory based on the principles ofcontinuum mechanics. Results on existence, stability, asymptotics as wellas singular limits will be discussed.

Deterministic Algorithm for Lovasz Local Lemma

Series
Combinatorics Seminar
Time
Friday, September 4, 2009 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Karthekeyan ChandrasekaranCollege of Computing
Lovasz Local Lemma (LLL) is a powerful result in probability theory that states that the probability that none of a set of bad events happens is nonzero if the probability of each event is small compared to the number of events that depend on it. It is often used in combination with the probabilistic method for non-constructive existence proofs. A prominent application of LLL is to k-CNF formulas, where LLL implies that, if every clause in the formula shares variables with at most d \le 2^k/e other clauses then such a formula has a satisfying assignment. Recently, a randomized algorithm to efficiently construct a satisfying assignment was given by Moser. Subsequently Moser and Tardos gave a randomized algorithm to construct the structures guaranteed by the LLL in a very general algorithmic framework. We will address the main problem left open by Moser and Tardos of derandomizing their algorithm efficiently when the number of other events that any bad event depends on is possibly unbounded. An interesting special case of the open problem is the k-CNF problem when k = \omega(1), that is, when k is more than a constant.

The McKean--Vlasov Equation in Finite Volume

Series
Math Physics Seminar
Time
Thursday, September 3, 2009 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Lincoln ChayesUCLA
The McK--V system is a non--linear diffusion equation with a non--local non--linearity provided by convolution. Recently popular in a variety of applications, it enjoys an ancient heritage as a basis for understanding equilibrium and near equilibrium fluids. The model is discussed in finite volume where, on the basis of the physical considerations, the correct scaling (for the model itself) is identified. For dimension two and above and in large volume, the phase structure of the model is completely elucidated in (somewhat disturbing) contrast to dynamical results. This seminar represents joint work with V. Panferov.

Sparsity pattern aggregation in generalized linear models.

Series
Stochastics Seminar
Time
Thursday, September 3, 2009 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Philippe RigolletPrinceton University
The goal of this talk is to present a new method for sparse estimation which does not use standard techniques such as $\ell_1$ penalization. First, we introduce a new setup for aggregation which bears strong links with generalized linear models and thus encompasses various response models such as Gaussian regression and binary classification. Second, by combining maximum likelihood estimators using exponential weights we derive a new procedure for sparse estimations which satisfies exact oracle inequalities with the desired remainder term. Even though the procedure is simple, its implementation is not straightforward but it can be approximated using the Metropolis algorithm which results in a stochastic greedy algorithm and performs surprisingly well in a simulated problem of sparse recovery.

Planar Graphs and Planar Posets II

Series
Graph Theory Seminar
Time
Thursday, September 3, 2009 - 12:05 for 1.5 hours (actually 80 minutes)
Location
Skiles 255
Speaker
William T. TrotterSchool of Mathematics, Georgia Tech
We will discuss the classic theorem of Walter Schnyder: a graph G is planar if and only if the dimension of its incidence poset is at most 3. This result has been extended by Brightwell and Trotter to show that the dimension of the vertex-edge-face poset of a planar 3-connected graph is 4 and the removal of any vertex (or by duality, any face) reduces the dimension to 3. Recently, this result and its extension to planar multigraphs was key to resolving the question of the dimension of the adjacency poset of a planar bipartite graph. It also serves to motivate questions about the dimension of posets with planar cover graphs.

Sum-Product Inequalities

Series
ACO Student Seminar
Time
Wednesday, September 2, 2009 - 14:00 for 1 hour (actually 50 minutes)
Location
ISyE Executive Classroom
Speaker
Ernie CrootSchool of Mathematics
Sum-Product inequalities originated in the early 80's with the work of Erdos and Szemeredi, who showed that there exists a constant c such that if A is a set of n integers, n sufficiently large, then either the sumset A+A = {a+b : a,b in A} or the product set A.A = {ab : a,b in A}, must exceed n^(1+c) in size. Since that time the subject has exploded with a vast number of generalizations and extensions of the basic result, which has led to many very interesting unsolved problems (that would make great thesis topics). In this talk I will survey some of the developments in this fast-growing area.

Pages